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Abstract. A strategy for reducing the risk of non-ergo-
dic simulations in Monte Carlo calculations of the
thermodynamic properties of clusters is discussed with
the support of some examples. The results obtained at-
test the significance of the approach for the low-tem-
perature regime, as non-ergodic sampling of potential
energy surfaces is a particularly insidious occurrence.
Fourier path integral Monte Carlo techniques for taking
into account quantum effects are adopted, in conjunc-
tion with suitable tricks for improving the procedure
reliability. Applications are restricted to Lennard-Jones
clusters of rare-gas systems.
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Introduction

Due to the dominance of surface effects, it is known that
clusters behave in a very different way from bulk matter,
with the consequence that new properties, not displayed
by extended solids, come to light. This means that the
picture of a cluster as a fragment of a solid, with the
same structure, is an unacceptable oversimplification.
Understanding the differences in behavior of nanosys-
tems with respect to bulk materials is an important
challenge of for present-day research that has motivated
cluster studies for years, and with successful future
perspectives. Unlike bulk matter, physical properties
(thermodynamic, electrical) of most clusters exhibit very
irregular dependence on size, in particular on the num-
ber n of monomers involved. These anomalies determine
the well-known “magic number” effect [1]. In view of
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these peculiarities, numerous applications of nanoag-
gregates are expected, in a variety of technological
branches (from PC memories, to the medical sector, to
fine chemical catalysis). Indeed, the need to know the
behavior of nano-structures in detail and the require-
ment to provide a rationale for controlling their size and
structure have contributed to focus our own interest in
this area of research.

In principle, the spatial structure of a cluster is
essentially a result deducible from the inspection of the
(very complex) Potential Energy Surface (PES) produced
by the interactions between the monomers in the clusters
[2]. Each minimum in this surface is associated with a
possible isomeric structure of the cluster. At sufficiently
low temperatures, the lifetime of an isomer is long en-
ough that we can study the path and the transition states
connecting the various minima, although their statistical
weights for thermodynamic properties can be very dif-
ferent. Obviously, the PES availability is a prerequisite
for theoretical work on clusters. For a system involving a
large number n of particles, obtaining this Born-Op-
penheimer (BO) hypersurface (possibly in interpolated
analytical form [3]) is a difficult and generally very
expensive task, because it demands in principle that the
quantum-mechanical electronic problem, with clamped
nuclei in a sufficiently large number of geometries, has
been explored and accurately solved. Only after the PES
of the system is known does it become possible to begin a
computational statistico-mechanical approach [2, 4] for
the calculation of thermodynamic properties.

The careful and efficient exploration of the PES, an
especially critical step for systems involving a great
number of atoms and for simulations at low tempera-
ture, constitutes perhaps the principal goal toward
which we focused our interest. Indeed, if the sampling of
the PES leaves us unable to assign correct statistical
weights to the various PES regions, then we will be not
be able to avoid systematic errors caused by quasi-
ergodicity phenomena in the results. This problem, an
almost regular occurrence in finite-length Monte Carlo
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simulations, arises most frequently when the PES con-
tains regions characterized by very low transition
probability between each other, with high risk of sam-
pling confined to only one of these regions. The problem
is especially insidious because the resulting quasi-ergodic
simulation can exhibit rapid convergence and low
asymptotic variance, but with an error of definite sign (a
systematic error that does not decrease as the walk
number increases), a clear indication of procedural
breakdown. Moreover, the failure due to quasi-ergo-
dicity can be very marked in simulations performed at
low temperature, because PES basins not associated
with the global minimum-energy cluster geometry (and,
therefore, not very important statistically) are preferen-
tially sampled. This is a problem of particular signifi-
cance in the case of clusters with high particle number,
and in simulations started with a spatial distribution
wrongly guessed as that of global minimum.

The main intent of this work is to test a strategy (that
we call “Growth”) that allows us to reach the global
minimum-energy basin of the n-particle cluster in the
warm-up stage, using knowledge of the geometrical min-
imum structure of the (n—1)-particle cluster in a recursive
manner. In this way, the possibility of performing simu-
lations on structures with minima that are only presumed
(which occurs when using an initial random spatial dis-
position of the particles or, worse, when using a structure
derived from bulk properties) is much reduced.

We apply the method to simple systems that show the
quasi-ergodicity phenomenon, demonstrating how we
can ensure ergodic sampling. With the aid of other simple
tricks, the method can be extended to systems of greater
complexity. Our applications will be limited to simple Ar
and Ne clusters, investigated in earlier studies [5, 6, 7, §8].

Method

All of the thermodynamic properties of a system consisting of an
arbitrary number n of particles can be obtained from the knowl-
edge of the canonical density operator:

P(B) = exp [~pH] = exp [-B(K + V)] (1)

where H = K + V is the Hamiltonian operator of the system, the
sum of the kinetic energy K and the potential energy ¥ operators,
and f=(kgT)" is the temperature parameter, kg being the Boltz-
mann constant. ¥V = V(ry,r,,...,r,) depends on the n particle
positions {ry,ry,...,r,}, and defines a hypersurface geometrically
(PES). For the applications considered in this work, V(r,rs,...,r,) is
the result of the Born-Oppenheimer solution of the electronic
problem, and K is the nuclear kinetic energy. Considering the time
evolution operator of the system, U(t) = exp [7%’H , it is easily
recognized that p(f) = U(—iAif) (in other words the canonical
density operator is formally the evolution operator at imaginary
values of time, ?).

The expectation value of any property F can be derived as
follows:

P = Trﬁ? @

where f is the quantum-mechanical operator corresponding to the
property F. In the path integral approach suggested by Feynman

[9, 10, 11, 12, 13], the traces appearing in Eq. 2 are usefully ex-
pressed in the coordinate representation. If the operator f is
diagonal in such representation, we obtain the following compact
result:

_ fd3”r<r|exp (7[11?) I f(r)
) = B (rlexp (B ) 3)

involving multidimensional integrals extended to the overall con-
figuration space.

There are two principal methods of evaluating the diagonal
matrix elements (r|exp (—pH)|r), interpretable as closed path-
integrals. In the first one, the path-integral is discretized by sub-
dividing each path covered in the imaginary time f into a large
number N of stages of small “duration” /N, where the approxi-
mation:

exp (fﬂl:[/N) ~ [exp (fﬁlA{/N)Hexp (fﬂf//N)} 4)

can be assumed to hold. The resulting multidimensional integral for
(F) is then computed using Monte Carlo (M.C.) methods [4, 11,
13]. The second way of approaching the evaluation of (F) makes
use of a Fourier representation of the paths, through the expansion
of each of them in a sine Fourier series about the straight line
reference trajectory [2, 6, 14, 15]. This alternative procedure leads
to the expression:

J (T T day)d> rpy,,,, (r.a)f (v, a)
[ (s 112 dag i) d* g, (v, @)

Here a is a compact notation for all of the Fourier expansion
coefficients gy ;, in analogy to the r employed for all of the 3n
configuration coordinates. In practice the Fourier representation is
truncated at a given ky,x for each of the 3nm spatial variables
(depending on the accuracy required) and the resulting expression
is again evaluated by MC techniques (FPIMC approach, from
Fourier Path Integral Monte Carlo, is the acronym most frequently
used). Both procedures described above clearly give rise to an
increment of the effective number of degrees of freedom (for
example they become 3n(kma+ 1) in the second case), a conse-
quence of the necessity to adequately treat the involved path inte-
grals so as to pick up the embedded quantum effects [11, 12, 13, 14].
Such increment of the dimensionality of the integrals involved
legitimates the use of MC methods [16], which are not be very
susceptible to dimensionality problems.

The formulation adopted in this section provides average values
of properties according to the statistical mechanics canonical
ensemble. In the case of macroscopic systems, all of the represen-
tative ensembles (canonical, microcanonical, and so on) are to be
considered equivalent, due to the typically small energy fluctuations
involved. In the case of clusters, the role of these fluctuations can be
important, influencing the choice of the statistical ensemble. In
view of the interests explicitly declared in this paper, namely the
behavior of thermodynamic properties as temperature changes, the
most suitable choice seems to be the canonical ensemble
[11].Running into problems associated with inaccurate sampling is
a common occurrence for clusters involving many units, or for
simulations at very low temperature, and they result in poor results
from the MC simulations due to quasi-ergodicity effects. The
warm-up period (sometimes called thermalization), a necessary
preliminary activity for all Monte Carlo calculations carried out
using the Metropolis algorithm [17], is a stage during which we
proceed to sample the configuration space without data accumu-
lation. During warm-up, the spatial disposition of the cluster atoms
is changing in search of an energetically stable geometrical struc-
ture, which is statistically very important, bearing in mind the final
goal (thermodynamic properties). Therefore, the warm-up period
should lead to increased accuracy of MC calculations, and to
independent results for the initial spatial disposition of the cluster
particles. The duration of this period, however, risks becoming
very long and time expensive, especially if the minimum-energy

(f) =



structure is unknown and the initial particle disposition is random
or is that characterizing bulk matter. A great number of steps are
actually required, in general, to reach the global minimum-energy
basin (or an energy basin in communication with it, at the low
temperature of the simulation) from a random initial disposition.
This number increases dramatically as the particle number becomes
large, particularly at low temperatures, which is why in such con-
ditions a good warm-up for clusters involving more than 15 par-
ticles is difficult to perform. According to the “Growth” strategy
mentioned in the preceding section, in the procedure tested in this
work the most stable structure of the n-particle cluster is built up,
starting from the (n-1)-particle cluster stable structure, in a recur-
sive way. The new particle is located a certain distance from the
(n—1)-particle cluster and added to it according to dynamics sim-
ulating a nucleation process. Only a modest number of MC steps
are required for the particle to reach its proper location in the
cluster while the other particles rearrange themselves in order to
give rise to the global minimum-energy structure.

For larger clusters (with more than 20 atoms) the strategy de-
scribed can be improved by keeping an eye on the energy changes
resulting from different approach directions (equatorial or axial)
for the added particle in the first stage of the warm-up.The effi-
ciency of the “Growth” procedure can also be improved through its
coupling with the so-called Parallel Tempering (PT) method [18], a
clever approach devised to reduce quasi-ergodicity risks by
increasing the probability of sampling configuration basins by
configurational exchanges through two parallel simulations that
proceed at different temperatures. Obviously, the higher the simu-
lation temperature, the broader the PES explored. The exchange
periodically attempted between configurations generated in the
course of the higher temperature simulation and that at the tem-
perature of interest can occasionally be accepted, allowing the
exploration of PES basins of otherwise difficult sampling.

A really efficient PT procedure would actually require several
simulations at different, increasing temperatures. In this work we
used PT involving two simulations, with some changes with re-
spect to the original suggestion. Actually, even though the two
simulations run parallel, the one at the temperature 7' of interest
involves quantum calculations in terms of path integrals. The
auxiliary simulation at the higher temperature T; is carried out in
terms of the faster and simpler classical algorithm. Only at the
trial exchange moment, with an established frequency (in this
work every 100-500 MC steps), the configurational energy at T;
proposed for the exchange is obtained via path integrals and
is used to evaluate the acceptance. In this way the detailed
balance condition is satisfied. In fact, if Z is the configurational
integral, for the joint density we find that the low temperature
walk is at configuration r and the high temperature walk is at
configuration r’:

pa(rr) = 2L VO BV )

where V(r) is the potential energy of the system in the configu-
ration r. The ratio of the conditional transition probabilities is
therefore:

K(r—17r,r —r)
K —rr—r)

=exp [~ (B = B;) (V' (+"))]
With the following choice of the acceptance criterion:

ace(rg — r,) = min [1,exp [— (8 — BV (rn) — V(ro))]]

at the moment of the configuration exchange (with V(r,),V(ro)
correctly calculated by path integrals), the detailed balance condi-
tion is satisfied [17]:

,D(r())K(V() e rn) = ﬂ(”n)K(Vn - VO)

so that the random walk visits the configuration space with a
probability proportional to the density p(r).

The net result of the procedure described is a considerable time
saving (simulations carried out in classical terms involve negligible
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time cost compared to those where quantum effects via path inte-
grals are taken into account), without significant differences in
answers from the PT procedure based on two parallel quantum
simulations.

It is worth noting that in the course of this work we have tested
the utility of a few additional procedures, between them the
J-walking method [19] (an approach which is similar to PT) and
Tsallis statistics [20, 21]. As far as application of these statistics are
concerned, their extension to the FPIMC context is still insuffi-
ciently explored, although from preliminary investigations the ap-
proach does not look entirely satisfying.

The applications discussed in this paper (see next section) are
limited to a schematic PES built in terms of simple pair interactions
represented by standard Lennard-Jones model. This simple po-
tential appears adequate to describe rare-gas clusters. Our succes-
sive considerations refer to the following PES:

n 12 6
v =4x | () - (2) ] + %
iy LNV K
Ve = i [ri=Rewm | 20
cCTEV R

where V¢ is a constraining potential energy acting to reflect par-
ticles reaching a coordinate near |[r—Rc .| near Rc, and is essen-
tially zero for bound particles [18]. The codes elaborated at our
laboratory are sufficiently flexible to allow easy extension to other
interaction models.

Results
Prototype systems

The first results we are going to present concern the Ar
clusters Ar;s and Arg (the latter a “‘magic” cluster). Our
choice of small Ar aggregates is motivated mainly by
their relative simplicity, largely due to a quantal
behavior that is not too strong. The following consid-
erations, however, are also valid for other monomeric
species and are most significant for clusters involving
lighter particles (such as Ne and H,), where the research
into methods and tricks to reduce the computational
costs becomes not only useful but imperative.

To reach the global minimum-energy structure of an
aggregate involving 15 atoms, starting from an initial
random disposition of the particles in the space,
5x10% MC steps are needed on average at 1-1.5 K. On
the other hand, by “Growth” strategy, 10° steps are
enough. An inadequate warm-up stage can produce a
great waste of computational time: the number of steps
can be even greater than that needed for the simulation
itself. For Arys, in fact, it is possible to have 0.1% error
in the energy with only 10° MC steps if the simulation
starts from an adequate, energetically stable, geometri-
cal structure of the cluster.

Now we can move on to present the results of the
simulations concerning Ar;s. The most stable thermo-
dynamic structure of this cluster arises from an icosa-
hedral model of growth. In this case, however, we are
confronted with two possible isomers, according to
whether the couple of atoms added to the icosahedral
core of the magic Ar; cluster are respectively near
neighbors (structure I) or not (structure II), as shown in
the Fig. 1. The two isomers are related to two different



410

potential wells present in the cluster PES, and have
different energies. A third isomer (structure III), char-
acterized by a non-icosahedral geometry, displays some
stability at sufficiently low temperatures, and becomes
statistically meaningful at higher temperatures. During a
simulation at high temperature (7> 15 K) the random
walk samples all important configurations; however, at
low temperature it can remain trapped in a potential well
all of the time. The structure assumed by the cluster
during a simulation can be understood by monitoring
the order parameter Qy4 [18], because its value is strictly
dependent on the geometry. In particular Q4 = 0 for
icosahedral structures and Q4 = 0.19 for f.c.c. struc-
tures.

In Table 1 Arys energies for different outcomes of the
warm-up at very low temperatures are compared with
the cluster global minimum-energy, while Fig. 2 shows
how Q4 changes during different warm-up runs.

As the particle number in the cluster increases, a
lot of complications arise as a consequence of the

(a) isomer I (b) isomer II

(c) isomerIII

Fig. 1. Isomers of the Ar;s cluster. Their relative energies are
reported in Table 1

Table 1. Relative energy results from simulations with insuffi-
ciently long warm-up stages and with initial particle dispositions as
in Fig. 1. The simulations remain trapped in the P.E.S. basins
relative to each initial isomer. U is the exact internal energy for the
most stable cluster isomer. The calculations are performed by a
warm-up of 10° steps and a M.C. walk of 3x10° steps. The warm-
up is inadequate for addressing the cluster in its more stable ico-
sahedral structure, whose statistical weight is dominant at very low
temperature. Using warm-up of “Growth” type, the global mini-
mum-energy structure and correct energy are easily reached

kgT/e=0.0125 (Qq) U/Uy

1 isomer 0.0088 |

1I isomer 0.0075 0.970 £0.005
111 isomer 0.082 0.960+0.005
Structure by “Growth” 0.0087 1+0.005

proliferation of possible metastable isomers, whose
structures are harder to resolve into that of greatest
stability. This remark can be easily verified considering
the case of Arjo. For this cluster, the “Growth” strategy
offers a short cut to obtaining the global minimum-en-
ergy structure, that is the icosahedral one. Figure 3
shows how the parameter Q4 changes during a standard
warm-up stage of Ar;9 and during a “Growth” of Arg.
In the first case, we observe changes in Q4 between 0.10
and 0.19, while in a warm-up run by “Growth”, Q4 re-
mains steady around zero, an indication of an icosahe-
drical-type structure, the most stable one.

It is interesting to note the differences between the
“Growth” strategy implemented in our procedure and
the older algorithm used by Hoare [22]. The calculation
of thermodynamic properties of nanostructures sug-
gested in [22] involves a factorization of the canonical
partition function with respect to vibrational, rotational
and translational modes of the most stable cluster
structure. The method is sufficiently accurate at very low
temperatures, but is at variance with MC simulations at
temperatures where several phases can coexist. In fact,
the statistical weight of the various possible structures is
actually ignored. To determine the minimum-energy
structure, Hoare builds a tree of the possible isomers, on
the basis of fundamental structures (tetrahedral, octa-
hedral and icosahedral) for seed-clusters of four, six and
seven atoms respectively, locating additional atoms at all
possible packing vertices at the surface. The successive
optimization of the distinct structures by steepest des-
cent algorithm allows us to discern the most stable iso-
mer, but at the cost of a very laborious procedure,
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Fig. 2. Isomeric structures of the cluster Ar;s, as viewed through
the order parameter Q4. Each isomer has a different distinguishing
value of Q4 during the simulation. In particular, the isomer III (the
most energetic one) assumes values very different from 0
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Fig. 3. Behavior of the order parameter Q4 during a simulation for
Aryg. The figure shows Q4 values from warm-up in terms of
random initial disposition of the atoms, and from “Growth’ warm-
up. The latter is associated with a icosahedral-type structure, that
of greatest thermodynamic stability

particularly when a great number of possible isomers are
involved due to the cluster size. Our method, though not
so systematic, takes advantage of the power of the MC
simulations, where at low temperature the cluster is
automatically pushed toward its energetically most sta-
ble structure, corresponding in some sense with the
statistical path forced by the density function. Further
developments of our approach, however, could profit to
a noticeable extent by ideas put forward in [22] (for
example the determination of distinct growth schemes
on the basis of the different inertia tensors involved).

Thermodynamic properties of clusters

The considerations of this subsection will be limited to a
few thermodynamic properties: internal energy, heat
capacity at constant volume, and Gibbs free energy of
formation from the monomers. The internal energy U
plays a primary role. After this property has been ob-
tained, in fact, all of the remaining thermodynamic
functions follow readily (in principle, at least). There-
fore, the molar Gibbs free energy of formation can be
derived according to [6]:

AG° 0 T
—Gm:(l—n)ln L —lnig(n’V 1)
RT ksT Vin

2amhkg T\ "2
+In (7}!2 )
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1 (TUn, Ve, TdT’
- T T/2

(5)

The evaluation of the canonical partition function
On,Vy,,T) from Eq. 5 demonstrates that all thermody-
namic properties can be derived through knowledge of
the internal energy.

The free energy of formation is clearly a very
important quantity for several reasons. Predictions
about cluster stability, depending on temperature and
particle number, can in fact be made on the basis of AGY,
data. The same data are also of noticeable help in
nucleation studies (according to the homogeneous stea-
dy-state nucleation theory [23]), particularly in relation
to growth models of nanosystems.

A rather critical point concerning the evaluation of
thermodynamic properties, internal energy in particular,
is associated with the choice of the best estimator for the
property investigated. As far as the internal energy is
concerned, we used two main estimators (referred to as
the T-method and V-method respectively) with different
convergence behaviors and computational time demand.
Even though the role and properties of these estimators
have been widely discussed [15], we performed pre-
liminary tests on the two alternatives in order to get
direct experience about their convergence characteris-
tics, in particular the dependence on temperature and
the truncation parameter k., introduced in FPIMC
simulations. In order to optimize the convergence
characteristics, we used Partial Averaging [6, 24], a
technique that allows us to take (approximately) into
account the coefficients ignored due to the truncation of
the Fourier representation of the involved path integrals.
For both estimators and Partial Averaging, it is right to
point out that the subject is still a very contentious one,
as attested by recent contributions [15, 25, 26]. All of this
deserves considerable attention in view of applications
to come.

In analogy to the internal energy, the evaluation of
the heat capacity at constant volume, Cy, can be car-
ried out by resorting to different estimators. In this
regard, we will briefly mention that the virial estima-
tor [7] involves a greater computational time demand,
in exchange for more accuracy and regular convergence
to the exact value (at low temperatures) as kmax
increases.

Our simulations, as already mentioned, concern
Ar and Ne clusters, about which a vast literature
over the last 20 years can be reported. Looking at the
quantity:

AG(”;[% T) = G(}’l,p7 T) - G(n - lvpa T)

_G(lvpa T) (6)
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the free energy of formation of the n-particle cluster
from the (n—1)-particle [6], it is possible to find a first
justification of the “magic number” effect in the for-
mation process of the cluster (see Fig. 4). From an
experimental point of view, ‘““‘magic” numbers can be
defined with reference to the presence of local peaks in
mass spectra. A local minimum of a certain value, in the
plot of AG(n, p, T) against the number # of monomers in
the cluster, is associated with the presence of a “magic
number”. Looking at Fig. 4, we notice that the forma-
tion of Ar clusters containing 7, 13, and 19 atoms is a
highly favored process.

Heat capacity calculations on Ne and Ar clusters also
support the presence of peculiarities in the behavior of
clusters, at variance with the regular changes exhibited
by thermodynamic properties of bulk matter as tem-
perature is varied. From this point of view, the “magic
number” effect is clear too. The Cy versus temperature 7'
plots display sharper phase change regions and higher
peaks in the case of ““magic clusters’ compared to non-
magic clusters. In Fig. 5, the plot shows the height of the
Cvy peak as the number n of particles in the cluster is
varied. Ar clusters with =19 and n=13 are magic not
only with reference to the Gibbs free energy of forma-
tion but also to Cy.

It is very interesting to compare, as a function of 7,
the specific heat behavior of 13-atom clusters of Ar and
Ne, as shown in Fig. 6. For this comparison it is con-
venient to work in terms of the reduced temperature,

T
classical -
quantistic ——

30 F

&
S
T

T=10K, p=1atm

AG (n,p, TY/(kg*T) (*)

60

J0 F

_80 1 1 1 1 1 1 1
number of Ar atoms

Fig. 4. AG(n,p, T) behavior (Eq. 6) vs. number of atoms in clusters
at p=1 atm. Note the presence of “magic number” structure
corresponding to the favorite formation of Ar;3 and Ar;; (minima
in the plots). A third minimum, less evident, corresponds to Ar,
(magic, too)

kgT/e, € being the Lennard-Jones energy parameter for
the specific atom involved. The plots exhibit similar
shapes, with maxima located close to each other and
rather dissimilar in value. Both curves display an initial
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in Ar clusters. The numbers n=13, 19 are magic
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Fig. 6. Behavior of Cy(7T) vs. reduced temperature for Ar;; and
Ne,s clusters. The curves display similar shapes, which is typical
behavior for clusters modeled with pair additive Lennard-Jones
potentials



zone (on the maximum left-hand side) where Cy in-
creases, as a consequence of the possibility of exploring
other regions of the PES. corresponding to different
isomers. On the far right-hand side, Cy maintains a
rather high value, due to the evaporation effect (one
should note that the maximum is associated with the
change from solid to liquid phase). A comparison of the
same type as that presented in Fig. 6 can be found in
[28]. In this regard, we limit ourselves to pointing out
that our findings agree favorably with those of the latter
reference, even though the methods adopted in the
simulations are very different.

Conclusions

The exploitation of a strategy named “Growth” has
been shown to be effective for exploring of the global
minimum-energy structure of Lennard-Jones clusters,via
FPIMC simulations, in critical situations (at low tem-
perature). This method allows us to save a large amount
of computational time and to avoid dangerous quasi-
ergodicity effects during the calculation of thermody-
namic properties. Quasi-ergodicity problems are espe-
cially insidious at low temperature, because in the
absence of a good warm-up stage they can lead to sim-
ulations sampling PES configurational basins devoid of
important statistical weight. The coupling of this strat-
egy with P.T. gives the procedure further strength. It
could be very interesting to improve P.T. according to
recent ideas about the role of multiple “time step”” MC
[29].
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